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. An alternative approach to introducing numbers



1. The invention of numbers as suggested by John

Leslie (1817)

The oldest manifestations of arithmetic are tally marks on Neolithic bones.
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But there is no evidence that the tally marks were associated with a
concept of number.

It is easy to imagine that a set of tally marks represents a set of objects or
events, where each mark represents one element.

Thusthetally ||| ||| may represent a group of consecutive days,
one | for each day, without any conception of the number six.



THE

PHILOSOPHY

Let’s look at an idea presented in

ARITHMETIC: John Leslie’s The Philosophy of
’ Arithmetic (1817) about the

' invention of numbers.
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Let us endeavour to trace the steps by which a child or
a savage, prompted by native curiosity, would proceed in
classing, for instance, fwenfy-three similar objects.—

1. He might be conceived to arrange them by succes-
sive pairs. Selecting twenty-three of the smallest shells or
grains he could find, he might dis-
pose these in fwo rows, containing
each eleven counters, and one over.

Having thus reduced the number to cleven, he might sub-

divide this again, by representing only one of the rows,
with shells #wice as large as before. He

would conscauentlv obtain two rows of

_ffve each, witix anéxceuofone. teees o

Leslie, pp. 4-5.



We interpret this to mean that he suggests that the invention of numbers
may have started with the discovery than any collection of small objects (for
example, pebbles) is either even or odd, but not both.

This meant that attempting to split such collections into two equal parts, "A
pebble for me, a pebble for you", ends up either with two equal parts, or
with two equal parts and one left over.



The ability to recognize small numbers, one, two, and three, seems to
be inborn (e.g., Wynn, 1992; Dehaene, 1997). So the concept of
number may have started with the recognition that repeated halving,
and creating a record:

even, odd, odd, ...., even,

which ends with a record of either two || or three ||| items, provides a
unique description of the total.

The key idea from Leslie:

Processing such records, for example, finding sums and differences, can
be done without having names for individual numbers.

Therefore the beginning of arithmetic may have started with the
processing of such records and not with creating number names.

Let’s see how this might work.
(Taken from our JMM talk in Boston, “Counting”, January 2011.)



A person doing this task needs only to record, for each iteration, whether
there is a leftover or not, and to record the number of tokens left at the
end. It doesn’t require any mathematical knowledge or linguistic literacy.

A whole record may look like this:

o) no leftover
| one leftover
| one leftover
o) no leftover
| one leftover
/l/ three tokens left at the end

Do you see that this record came from partitioning 118 tokens?

3—7—>14—29 — 59— 118



Actual procedure for partitioning 118 tokens

Equipment needed: Three bowls, which we call L, M, and R (Left, Middle,
and Right) and material for recording.
To begin, put all tokens in the middle bowl




Move the tokens by taking one or two tokens from the middle container
in each hand and putting them simultaneously into the two side
containers. You may look at what you are doing, or do it just by touch.

No. of tokens in Record written
containers: L M R horizontally:
15t cycle 0 118 0
1 116 1
2 114 2
58 2 58

59 0 59 0



After the 15t cycle:




2" cycle

3"d cycle

4t cycle

59
60

38
89
90
103
104

105

111

29
27

14
12



After the 4t cycle:




L M R

5t cycle 111 7 0

114 1 3 o] o]
6t cycle 115 3 0

118 0 0 ol |ol//

At the beginning of the 6t cycle:




“Computation” before the concept of number

“Computation” would consist of forming a collection of tokens when a
record for the collection is given. For example, the record
ol [ol///
requires two operations:
doubling the existing collection ( k — 2k), and
doubling and adding one to the collection (k — 2k + 1)

The process of “computation”:

000 000 000 000 000 000 000 000
000 000 000 000 000 000 000
Modern numer- o) O O 0 00
ical computation: 3 7 14 29

But you could give someone the number of elements (tokens) above
without the concept of number, by doubling and doubling plus one the
amount (which is the reverse of the process of forming a record).



But here our story diverges from Leslie's.

Leslie assumed that the first number system that (the most primitive)
people used was the system that we now call "base two". And in this
respect he agreed with Levi Conant (1896) and others who followed him,
who thought that the size of the base, together with the range of number
words (the more the better) was the measure of the mathematical
knowledge of a society.

Instead, we think that other bases, such as 10, 20, and 12, could have been
used for computation from the very beginning.

Why?



2. John Napier’s original abacus (from Rabdologiz,
1617) and bases other than two
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In Arithmetice Localis, (the third part of his Rabdologi), the way that
he shows how to record numbers in base two could easily be changed
into computation in other bases (Gardner, 1986).

And because computation performed on such abaci do not require
number words, the same methods of computation could be
accompanied by very different systems of numerals, reflecting, for
example, different systems of units of measurement.



.
2 N
/‘ £ 3 -A&&;\
S 1y 754 T N\
TAEIERs S S EN %:.0.’.00 3 e

2

i REIEPHZE < AX X XX X KO
FAE 200 Tigitie

‘P
B T, S
_- Wa’:’o’o’o‘o’o‘o‘o‘&’b ik

Y IR I

.0, e
XD gt

@,
(Y
o

. N N L 5

O Ky azssiegd
N e,
0000008 o

N i T _

CX I K etazrind ;
IR posaee D
QORI RER RIS
007000 2. X o

(R KRR K ez
KRR St
000 0 oL

Napier's original abacus







Napier's original abacus

His abacus was a square checkered board that can be extended up and to the left,
where each square has a local value as shown below:

2n*2m 2m

64 | 32 16 8 4

32 16 8 4 2

2n 16 8 4 2 1
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Napier did not have the concept of "base 2". He used
a different notation:a=1,b=2,c=4,d=8, ....
So, for example, 37, which in base 2 is

100101 =2°+22+1,
was written as

fca.
Napier showed how to change from decimal
notation to his notation and back, and how to
compute the sums, differences, products, quotients
and square roots on his board.



The rules

were simple.

On each
square you
may put one
token

or two
tokens.

A token can always be moved along a "short" diagonal.
(The value remains the same.)



When you move a token to the right or down, it doubles.
A move in the opposite direction requires that two tokens be replaced by one.

Thus the values in each square above are all equal.



As mentioned small modifications in the rules of moving tokens facilitate
computations in any other, not too big, base.

And this shows that experimenting with different bases could have been a
rather easy task, after the basic idea of "processing records" was established.

Let’s look at two rules for moving tokens.



Vertical rule: the value of the
blue token and the values of
the two yellow tokens together
are the same.

Horizontal rule: the value of the blue
token and the values of the two
yellow tokens together are the same.



These rules correspond to the following local values on a board:

1000 | 200 40 8

500 | 100 20 4

250 50 10 2

125 25 5 1

And they are sufficient to carry out computation in any base that is
the product of a power of 5 and a power of 2 (i.e. 5, 10, 20, 25, ...).



Examples.

First we show how to enter a number in base two into the right-most column and
convert it into base 10.

We convert a number in base 2 into decimal using a decimal abacus.
The number in the last columnis 111010=32+16+8 + 2 =58
Consecutive configurations are shown together with the sum of the values in three

columns.



800 160 32
400 80 16
200 40 8
100 20 4
50 10 2
25 5 1
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800 | 160 32
32 32
400 80 16 ’
s 2 16 16
20 | 40 | 8 ‘ o . ‘
) 3 40 8
100 20 4
50 10 2 ‘
10 2
25 5 1

58

40 18 0 50 10

This can be
read as 58.



How to represent the digits 1, ..., 9 in one column (the lowest location is the
power of ten):

100 e



Example of how to add two numbers in base 10: 158 + 283

158




Example of how to add two numbers in base 10: 158 + 283

158 158 + 283




Example of how to add two numbers in base 10: 158 + 283

158 158 + 283 158 + 283




158 + 283




158 + 283 158 + 283




158 + 283 158 + 283 158 +283 =441




Similar rules can be shown for bases 6, 12. ..., and the "hybrid" base
60, which has both 3 and 5 as a factors.

Two conclusions.

Our first conclusion is that it is possible (by the work of Napier) that
developing the rules of arithmetic and developing number words
were two very different processes that could have gone on in parallel
without influencing each other very much. Or even that the rules of
arithmetic preceded number words, and were formulated in terms of
changing configurations of tokens.

Our second conclusion (as suggested by Leslie) is that arithmetic may
be based not only on the process of counting, but also on the process
of doubling (and its inverse, halving) which underlies the recording of
numerosities.



Summary of our hypotheses
Here is a possible logical sequence of events: % °

o
1. Representation of collections by a one-to-one matching %
with tokens. ia °

2. Discovery that sets of tokens are either even or odd, but
not both (Leslie).

3. Creation of “binary” records of numerosities (Leslie).o | | o | ///
(These records are the first numbers.)

4. Processing the records as patterns of tokens on counting boards
(Napier) (Different bases are experimented with.)

5. Number words describing abstract numbers are created, and they
spread through societies.



3. The current approach to early learning of
arithmetic

In grades K-3, the introduction to arithmetic starts with children
memorizing a sequence of number words up to 20 or more.

They also learn to count small collections of "things" by matching
them with the memorized sequence of words.

"The last word tells how many.”

Next, addition is introduced as joining two collections of objects and
counting the total, which is improved to counting up from the bigger
number, and skip counting.

These activities are preliminary to learning more "standard" methods
in the future.

A similar pattern is repeated when multiplication is introduced as
repeated addition.



A theoretical justification for this approach seems to be very recent,
i.e., the work of Dedekind (1883; 1963) and Peano (1889; 1967) in the
late nineteenth century.

They expected that the recursive definition of addition in terms of
"next number" and of multiplication in terms of addition would allow
one to deduce all the properties of addition and multiplication from
the simple properties of "next number”.

We know now that properties of addition and multiplication cannot be
derived from the properties of "next".

But this fact belongs to the history of number theory and logic, and not
to school math, because logical deductions among different properties
of numbers are not part of elementary mathematics.



But basing addition on counting and multiplication on repeated
addition has important consequences for teaching in early grades.

The reason for this is that this approach leads to very inefficient
methods of computation.

For example, computing the product of two three-digit numbers by
repeated addition requires several hundred steps, while other
methods require no more than 20 steps.



4. An alternative approach to introducing
numbers

If we would follow the idea of Leslie, we would start, not with
counting as the only operation, but with two operations, counting
and doubling.

This would allow children to create records of numbers (much bigger
than 20), which in turn can be processed in a variety of ways on very
simple counting devices.



At present in early grades children see in their classrooms a "number
line",

12345678910 11 12 13 14 15 16 17 18 19 20

When we use two basic operations, "next" and "double", the number
line is replaced by a "number heap":

3
5 6 7
9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

co B~ N K

which, when read horizontally, gives the next number, and when read
vertically gives the double.



This approach allows one to introduce large numbers much earlier.
For example:
The question, what is 407, can be answered as follows:

5 is the double of 2, plus one,

10 is 5 doubled,

20is 10 doubled

and 40 is twenty doubled

If you look at the heap, we see that any number up to 31 can be
obtained from 1 by no more than four applications of "double" and
"double plus one".

3
5 6 7
9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

o~ N BEF



A small abacus board

2001 40| 8

100 20 . 2 |
50| 10| 2
251 5 1

is sufficient to do addition and subtraction up to 200, and also
to find all products up to 200 of two smaller numbers.
And neither task requires that children memorize addition,

subtraction, or multiplication facts.



Final conclusion

We don't suggest that the approach presented should be used in
schools, but only that looking for alternatives to the existing method is

needed.
And that the history of arithmetic may provide valid guiding principles.
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