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1. Introduction: A “new” problem with historical
roots, and its mathematical formulation

399. The Ladder and the Box

A ladder, 4 mertres long, is leaning
against a wall in such a way thar it just touches a box, 1 merre by 1

The “ladder and box” problem

metre, as in the figure. How high is the top of the ladder above the (this example from Wells,

floor?

What distance
h is the top of
the ladder

above the
floor? h

4am

im

im

1992) is relatively new; it first
appeared in A. Cyril Pearson’s
1907 20 Century Standard
Puzzle Book (London).

But its mathematical underpinnings
have been traced back to Nicomedes
(~200 BCE), as well as to Newton (1720)
and Thomas Simpson (1745).

The problem is to build a right triangle,
given a right angle, and an inscribed
rectangle (here, the rectangle is a square),
together with a segment s, representing
the length of a hypotenuse.

In puzzle problems, one is asked to find
the length of the leg of the triangle.



wall h

2. A modern solution using a simple
trigonometric equation

ladder of length s

X

width=a

box

height=b

At present, the
lengths of the legs of
the right triangle can
be found analytically
by solving a simple
trigonometric
equation that is easy
to derive.



wall h

ladder of length s

X

width=a

box

height=b

So we have
s, *sin(x)=b
s,*cos(x)=a
S;+S,=5
By eliminating s; and s,, we get
b/sin(x) + a/cos(x) = s
We know a, b, and s.

Both solutions to this equation
can be easily found, for
example, by using SOLVER on a

graphing calculator. Then the
required height h is

h=s*sin(x).



wall h

height=b
box

Note that there are two
solutions. The ladder can

reach the wall either high
or low.

__________________




a a

When b = a (the box Let y1 =sin(x) and y, =cos(x). So we have — + —-=s.
. yi "2

is a square), the 5 )

trigonometric Therefore we have: y; +y, =1

equation

b/sin(x) + a/cos(x) = s
can be reduced to
two quadratic
equations that can
be solved using only
square roots: Letz=y; +y,. We can find two values, z; and z; of z

a
y1 *y2 =;(y1 +y7).

2 2
Because (yq +y» )2 =y1 +Y2 +2(y1+yy), wehave

*
2%a

(v1+y2)° = (y1 +y2)+1.

by solving for z this quadratic equation:

Now for each z; we have

Yy1+V2 =2
a
y1*y2=—"%z;.
S
So y; and y, can be found by solving for y this equation:

a
y2 -zj*y+—*z;=0.

S



There are similar, but different ways to solve this problem.

For example, see Thomas Simpson’s 1745 solution (below);
and see also J.V. Uspensky’s 1948 solution in his book Theory
of Equations, and B. Fisher’s 1972 solution in his
Mathematics Magazine article, The Solution of a Certain
Quartic Equation.




3. How the problem has been solved historically,
and what it meant each time “to solve a problem”

a. Geometric solutions
b. Algebraic solutions
c. Solutions as puzzles or as recreational mathematics

This problem is interesting from the point of view that its
general case, finding a solution for an arbitrary inscribed
rectangle with sides a and b, was considered to be very
difficult.

(It cannot be constructed with straight edge and compass,
and the polynomial equation expressing the lengths of the
legs in terms of a, b, and s, has degree four.)



The main simpler version of the problem is when the
rectangle is a square, which admits other techniques that
don’t work in the general case.

The other special cases of the problem in which one can
rather easily find the lengths of the legs of the required
right triangle are when all the numbers involved, namely,
the sides of the rectangle, the triangle’s hypotenuse, and
the two legs to be found, are rational. They often pop up
in puzzle books and recreational mathematics, because
they can be solved by “guess and check” methods.



a. Geometric solutions (at the time of the Greeks).

We credit this information to Audun Holme, Geometry: Our
cultural heritage (2010).

For an arbitrary rectangle, the problem cannot be solved by a
straight edge and compass construction. But it can be solved

by using Nicomedes’ (~280-210 BCE) conchoid and tools
related to it.



Here is a diagram of a tool that can be used to draw a

conchoid:

This tool will draw both parts of the conchoid.



Here we show both parts with the “loop” above rather
than below the directrix (the horizontal line PQ):

[a directrix



But because for our problem we need only ONE point on
a curve, a simple straight edge with two marks suffices:

N directrix




At that time, the solution to a problem was a step-by-step
description of a geometric construction using only specified

“tools”. But these “tools” seem to represent rather abstract
operations.

For example, using a “straight edge” meant that you can
construct a unique straight line passing through any two given
points, and using a “marked” ruler meant that you can put a
point on a conchoid, given a point on its directrix and its pole.

No numbers were involved in any construction.

The length of a segment was not a number, but the segment
itself.



b. Algebraic solutions

Both Isaac Newton in Universal Arithmetic (1720) and Thomas
Simpson in A Treatise of Algebra (1745) analyzed a large
number of geometric problems, showing how they can be
solved using algebraic techniques.

These solutions did not involve analytic geometry, because no
coordinate systems were involved.

Instead, the relationships among segments, such as
proportions, were translated into equations involving lengths
of those segments.

Then, step-by-step procedures for solving these equations
were shown.



Both authors considered only the special case (where the
rectangle is a square, a=b), because it leads to a
biguadrate equation.*

*A biquadrate, or biquadratic, equation is a quartic
equation that can be solved with only square roots (no
cubic roots are needed). (We showed such a solution in 2.
above.)



Here is the
problem in
Thomas

Simpson’s

1745 book:

250 A Treatife of ALGEBRA,

PROBLEM XV.

The Sida of the inferibed Square BEDF ,and WW‘W
AC .y'g; n,b;{ ngled Tr1angle ABC bei
termine the other two Sides of th Trwnglt A Md' BC.

Let DE or DF =a, AC=4}, AB=1x and BC..,,
then it will be as x :

/C —2(AF) : a (FD) whence
we have ax= yx——ya, and
D F confequently —rB a_{:

:jgnh"-l- 6'(!:’

g OF 3% y¥ ==
En.47.1 ), to which Equa-
‘ﬂ' the double of the
and there

A, B mfe.r‘ +3l.+;'=l’+
2ax - 2ay, that is x4 —&’-}-zcx:-}-’, and con-

] — = by con-
iy s soe Chasder, sad complming e
Square, we have ¥yl —zax 8+J+"—5‘+¢';
wbmce;:-_y—a_v -l-a', and .r-l-;_;/‘!.‘.nm

which put =¢, and then, by uutmg c—xi

of its ml {y) in the foregoing Equation, sxy=ax <4 ay,
there will arife cx-—-:'-dr; whence » will be found =

i¢ 4 Vice—ac and y=ic — 4/ icc ~—as.




In both cases a solution was a step-by-step algebraic
procedure for computing the required numbers.

But the solution showed only the method of finding the
numbers.

No specific numbers were involved, either in the formulation
of the problem or in the procedure.

The method of showing algebraic procedures by starting with
a specific case with numerical coefficients, and only then
showing a general procedure, which is common in modern
algebra textbooks today, was never used by Newton or by
Simpson.



In applied mathematics, solutions to problems often
include specific numbers.

But they are almost never limited to numbers.
Rather the opposite is true.

In applied problems we usually want to know more about
the solution than we do in purely theoretical problems.



In a lecture she gave in 1969, Mary Cartwright talked about
the fact that even when one looks just for a number, that is
not all one wants to know, especially if one is an applied
mathematician.

She wrote about solutions to differential equations,

“...(one) really wants to know something about the solutions
in general. Is there a periodic solution? Is it stable? Will it
remain stable if | change a certain parameter? Will the
period be longer or shorter?..”

(Cartwright, cited in Ayoub, 2004)



C. Puzzles and recreational mathematics

THE TWENTIETH CENTURY
STANDARD PUZZLE
BOOK
Here is the title FHREE PARTS IN ONE VOLUME
page of A. Cyril
PearSOn’S 20”7 A. CYRIL PEARSON, M.A.
Century Puzzle
Book, London

(1907).

LONDON
GEORGE ROUTLEDGE & SONS, LTD.
NEW YORK : E. P. DUTTON & CO



And the first

occurrence
of the
Ladder and
box problem
(that we
could find):

The box is 15 ft wide and
12 ft tall, and the ladder
is 52 ft long. It hits the
wall in two places; the
height of only one is
given: 48 ft.

No. CIII.—CLEARING THE WALL

If a 52-feet ladder is set up so as just to clear
a garden wall 12 feet high and r5 feet {rom the

building, it will touch the house 48 feet from the
ground.

AP

“Our diagram shows this, and also, by a dotted
line, the only other possible position in which it
could fulhl the conditions, if it were then of any
practical use. |



Recreational mathematics is for amateurs.

Problems are formulated, not in general, but in specific
terms, and they are usually embedded in some kind of a

story.

The solution to the ladder and box problem is just a number,
independent of the method used to find it.

Also, in recreational problems, irrational numbers occur very
rarely, and this explains why box and ladder problems have
rational numbers as data and usually have rational solutions



All these examples fall into one category, which requires
finding a rational root of a polynomial equation with
rational coefficients.

And this problem can be solved by Euler's method (which

really is a “guess and check” method with a bounded
number of guesses).

But we did not find any author who discusses Euler's
method in the context of this problem.



One thing is missing in all the examples we have seen:

How to design the puzzles so that the lengths needed are
whole numbers.

Puzzle makers don’t want to tell how to do it!

But if you’'d like to know how, here’s a method.



Start with a box whose dimensions
are whole numbers a and b:

Now choose a Pythagorean triple, p, q,
and t. Form the right triangle T with
hypotenuse t and legs p and q:




Form a new box with the shape
apq by bpq (similar to the first box).

apq

new box

bpg




On top of the new box, place a right
triangle similar to triangle T. Each side
of the new triangle should be 202 apt
multiplied by ap, so the two legs are
now ap? and apg, and the hypotenuse 204
Is apt.
apq
new box

bpg




Now place another
right triangle similar
to triangle T to the
right of the box.
Each side of this
new triangle should
be multiplied by bq,
so the two legs are
bpg and bg?, and
the hypotenuse is
bgt.

ap?

apt

apq

apq

new box

apq

bgt




You can see that the
length of the l[adder
is apt+bqgt, a whole
number; and the
height at which the
ladder touches the
wall is ap?+bpq, also
a whole number.
The distance of the
bottom of the
ladder from the
wall is apg+bg?.

ap?

bpq

apt

apq

apq

new box

apq

bgt




An example

Choose a box with dimensions a=1
and b=2.

Choose a Pythagorean triple
triangle, say p=4, q=3, and t=5.
Construct a new box with
dimensions apg=12 and bpqg=24.
The right triangle on top of the box
has legs apg=12 and ap?=16, and
hypotenuse apt=20.

The right triangle on the right side
of the box has legs bpg=24 and
bg?=18, and hypotenuse bpt=30.

So the new box and ladder

looks as follows:

16

24

12

20

12

24

30

18




16

24

We notice that the numbers in the new triangle
are all even (because the height b of the box

is 2, and the height p of the triangle is 4, so they
both have a common factor of 2). So the new

box and new triangle can be scaled down by 2:
12

15

12 12

12




Looking again at the example from Pearson (1907):

No. CIII.—CLEARING THE WALL
If a 52-feet ladder is set up so as just to clear
a garden wall 1z feet high and 15 feet {rom the
building, it will touch the house 48 feet from the
ground.

o,

Our diagram shows this, and also, by a dotted
line, the only other possible position in which it
could fulhl the conditions, if it were then of any
practical use. :

The triangle is a 5-12-13 Pythagorean
triple: 20-48-52!

For the low-lying ladder, it’s a different
story: 17.29-49.04-52.



4. Final comments

In current mathematics, the modern meaning of solving a
problem is really not much different from the meaning used
by Newton and Simpson.

We expect to see a general mathematical procedure to solve
some reasonably large class of problems.

And in applied problems we may also require some numerical
values of the variables.

The main difference is that the range of problems that can be
solved is much larger and the use of technology is getting
more and more prevalent.



But the use of technology brings some important changes.

Now a person who solves a problem doesn’t need to know
how the problem is solved.

So a student who solves the box and ladder problem by
writing the equation,

b/sin(x) + a/cos(x) = s
and solves it on a graphing calculator for specific values a, b,
and s, does not need to know anything about Newton's
method, which provides solutions to these kinds of
equations.



A comment about school mathematics

School mathematics is a special case.

(By school math we mean all K-12 math and college math for
non-math majors, that is not part of their professional
training.)

The concept of solving a problem in school mathematics is just
like in recreational mathematics.

Problems are embedded into some narratives (story
problems) that are rarely realistic.

What is required is usually just one or a few numbers, and the
correctness of the answer is judged by their values.

And also many educational researchers discourage teaching
general procedures, and encourage improvisation as being
more creative.



This trend goes against the millennia-long trend in the
development of mathematics that is moving toward
general solutions, which not only provide a numerical
answer, but also explain how it can be done, and even why
it should be done in this way and not in another way.

But on the other hand, students are still drilled in very
specific arithmetic procedures with very narrow ranges of
application (for example, addition of common fractions
with different denominators) that were designed a
hundred years ago for accounting and other practical
purposes.



The “ladder and box” problem
in modern classrooms

The problem we have described is just one in a group of
“ladder” problems (see http://www.mathematische-
basteleien.de/ladder.htm#Sliding%20Ladder%20Problem:s).
Others are the “Sliding ladder” as a geometric problem (e.g.,
Gutenmacher & Vasilyev, 2004, pp. 1-3, 113-114), the “Sliding
ladder” as a dynamic calculus problem (e.g., Foerster, 2005, p.
178), the “Shortest ladder” as an optimization problem in
calculus (http://sofia.nmsu.edu/~breakingaway/
ebookofcalculus), and the “Two crossed ladders” problem
(e.g., Gardner, 1979, pp. 62-64; Wells, 1992, p. 131).



With its rich history the “box and ladder” problem can be
placed in several strands of high school mathematics.

In geometric constructions done either by hand or with
computer software, the problem demonstrates the role of
“basic tools”, namely, the class of curves that can be drawn.

In algebra its square box version is a very challenging
problem that can be solved by the use of quadratic
equations.



Finally, the general problem can be solved easily with
calculator technology (see 2. above).

But this presents a dilemma.
Traditionally, solving such problems in school is not a goal in

itself.
Instead, it is only done to teach students some techniques
and to help them understand more general principles.

Does this mean, for example, that we should not use the
TI-84 SOLVER program unless we teach students Newton’s
method for solving equations, which underlies SOLVER’s
software?
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