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1. A little history: A universal computing device

The history of data processing can be looked at from two different points of 
view, engineering and mathematical.
 

An engineering point of view covers the development of data storage from 
tally sticks, knots on cords, and clay tablets, to modern memory sticks.
And the evolution of computing tools starts with fingers, beans, and pebbles, 
and currently includes iphones, computers, and other electronic devices.

A mathematical point of view deals with the development of the underlying 
ideas, independent of whether they were abandoned and forgotten, or 
whether they had great practical significance.

A discussion of Napier’s achievement, which provided logarithmic tables, the 
slide rule, and to a lesser degree, “Napier’s bones”, belongs to the engineering 
view of history.

But his “location numbers” and “computation on a chess board”, which never 
had any application, belong to a mathematical view of the history of 
computation, and they are the subject of this talk.



Computer science was created around the middle of the twentieth century 
and is based on two abstract concepts: data and algorithms.

The abstract concept of data is a part of “information theory”, created by 
Claude Shannon (1916-2001), together with several related concepts such as 
the now familiar measure of the capacity of information storage devices in 
kilobytes or megabytes. 

 The concept of algorithm was created, under several different names, by 
David Hilbert (1862-1943) and his followers during the first quarter of the 
twentieth century, as part of his attempt to clarify the philosophical 
foundations of mathematics. 

 An algorithm is a detailed, step-by-step description of a data processing 
procedure. We still use many mathematical algorithms that were designed 
more than two thousand years ago.

But no systematic study of algorithms, and no reasonable definition of them, 
were known until the work of Hilbert and his followers.



But the key insight that made all the practical difference belongs to Alan Turing 
(1912-1954), who showed that it is possible to construct one device that is 
capable of carrying out any algorithm, regardless of how complex and difficult it 
may be.
The only resource that such a “universal computer” needs is access to 
sufficiently large data storage. 
Such universal computers are now small, cheap, and mass-produced, and they 
are the “brains” of all “smart” electronic devices.
 
But was Alan Turing the first person who thought that it is possible to construct 
a universal computer?  
We think that John Napier (1550-1617) attempted to create such a device, and 
that he even might have believed that his chessboard, filled with location 
numbers, was a universal device.

(It was not, but it is still a very powerful computing device.)



2. John Napier’s overlooked idea
                               from his Rabdologiae (1617)



Location numbers on a chessboard
 
This is the last topic that Napier describes in Rabdologiae (1617), 
introducing it as follows:
 
While working in my spare time on these short methods and seeking ways in 
which the tedium of calculations can be removed, I developed not only my 
logarithms, my rabdology (rods), my promptuary for multiplication, and 
other things but also a method of arithmetic on a flat surface.  As it 
performs all the more difficult operations of common arithmetic on a 
chessboard, it might be described as more a lark than a labor, for it carries 
out addition, subtraction, multiplication, division, and (yes!) extraction of 
roots purely by moving counters from place to place. … 



But he thinks that his computing device will do more than arithmetic 
calculations. In describing the use of powers of two in its construction, 
he writes:
 
Let it be a rod …, divided into equal parts, one for each counter or 
number [power of two] you desire it to hold. If, then, you want it to 
hold 16 counters or 16 numbers, you will divide it into 16 parts. In 
which case the sixteenth number would be 32,768, and the rod will 
calculate all numbers less than 65,536, which is sufficiently large for 
ordinary use. … If however you want to work with larger numbers 
(such as sines, tangents and secants) make a rod 48 fingers long and 
divide it into the same number of parts to accommodate 48 counters 
and 48 numbers, the last being 140,737,488,355,328. 



Napier’s original
board





Think of a 
chessboard of any 
size. Put the value 1 
in the right bottom 
corner and let all 
the rows and all the 
columns contain 
numbers forming 
geometric 
progressions with a 
factor of 2.  These 
are location 
numbers on a 
chessboard.



Any configuration of tokens on a board represents a number. 

Each token has the value of its location, and we take the sum of values of all 
tokens. (Several tokens can be stacked up on one location.)

Tokens can be moved according to simple regrouping rules that do not change 
the total value on the board.



(1) A token can be moved along a diagonal of locations having the same values.
(2) A token can be replaced by two tokens either to its right or just below.
(3) Two tokens on the same location can be replaced by one token to the left  or above.



Computations are performed as follows: 
Tokens are put on the board, their configuration is simplified

 according to rules (1) through (3) above, and the result is
                  recorded.

Different operations require different ways of putting tokens on a board, but 
the rules of regrouping are always the same.



We may say now that Napier represented numbers in 
base two. 
But he did not have the concept of base 2.  
Instead he created his own notation, where letters 
represented powers of two.

a = 1, b = 2, c = 4, d = 8, and so on …, 
         and values of the letters were added.

Thus dba = 8 + 2 + 1 = 11. 

 Napier described in detail how to translate decimal 
numbers into his notation, and how to translate the 
result of computations back into decimals.  

He showed how to use his board to compute the 
values of all of the five operations he mentioned in 
the preface.



Comparing location numbers to Turing machines

Turing described his computing devices in these terms: 

You have an infinite tape that is divided into squares. 
Each square can hold one character from an alphabet.  
Operations are erasing an existing character and replacing it by another, 
and moving left and right to the nearest location. 
(It is enough to use an alphabet that contains only two characters, 1 and 
blank.)  
Each device is described by a finite set of instructions that tell which 
operations to use. 
 



The computational power of such devices depends on their instructions.  
And only some of them are universal.
 (Google: the smallest universal Turing machines, John Conway’s Game of Life, 
and Stephen Wolfram’s cellular automata)
 
Of course writing and erasing characters and putting on and removing tokens 
are equivalent actions, and a two-dimensional array is more convenient to 
use.  So we can ask the question whether Napier’s board is a universal 
computing device.

The answer is no; not all algorithms can be carried out by putting tokens on 
the board and simplifying the configuration. 
But it is a very powerful computational tool, so Napier was right when he said, 
“it performs all more difficult operations of common arithmetic.”



Why location numbers were ignored

This is a matter of speculation, but calculation with tokens (jetons) was 
already waning in the seventeenth century. 
Financial institutions were using “modern” bookkeeping, introduced by 
Luca Pacioli (1445-1517), which required using written computation, 
and technical computations were done with the newly invented slide 
rule. 
 So computation on a chessboard could have been viewed as old-
fashioned. 

But Napier’s use of powers of two in his original but strange notation 
was probably the main reason that no one wanted to use his invention.

Paradoxically his counting board would be even better if it were made in 
base 10 and not base 2, because its computational power lies in using 
geometric progressions in rows and columns, which makes it similar to a 
two-dimensional slide rule, and not in using base 2.



Martin Gardner (1914-2010)

In 1986 Martin Gardner wrote an article, Napier’s Abacus1, in which he said,

“[Napier] described a curious method of calculating by moving tokens across a chessboard.”  And, “It is the world’s first binary 

computer, and it came almost 100 years before Leibnitz explained how to calculate with binary numbers!”

1In Knotted Doughnuts and Other Mathematical Entertainments



3.  Napier’s abacus as a teaching tool

Can a Napier’s abacus be used as a teaching tool, together with other 
manipulatives such as base-ten blocks, unifix cubes, and other 
concrete representations of numbers? 

Its original version is unsuitable for the following reasons:



(1) The fact that it uses only binary representations of numbers rules 
out its use in early grades.

(2) A binary representation requires many digits.
      In Rabdology Napier shows a 24 by 24 board, which allows us to
      multiply two 7-digit decimal numbers.

 Assuming that each location is one square inch, the board would cover 
4 square feet!

On a normal 8 by 8 chessboard, multiplication would be restricted to 2-
digit decimals because the biggest location number on such a board is 
47 = 16,384.



But as we said, the use of binary numbers was not an essential 
feature, so modifying the original design to accommodate a decimal 
representation of numbers makes it appropriate for all grades, and it 
also significantly decreases the number of locations that are needed 
to represent a single number.

We’ll call such a modification of Napier’s abacus, a decimal board.



Decimal boards

On a decimal board, numbers in columns are still 
geometric progressions with the quotient 2. But 
numbers in rows are geometric progressions 
with the quotient 5. So on one of the two 
diagonals there is a geometric progression with 
the quotient 10. This allows us to represent 
numbers on any such a board in bases 2, 5, 10, 
and any other base b, which is a product of 2 
and 5. Each decimal digit can be represented as 
one or two tokens on a board.

As before, exactly one location has the value 1. 
But the geometric progressions can extend to the 
right of 1, with values,  .2, .04, .008, …, and below 
1, with values, .5, .25, .125, … . Thus the decimal 
board allows us to represent not only whole 
numbers, but also decimal fractions.



Tokens used on a decimal board are 
two-sided. We use tokens that are 
white on one side and red on the 
other. The value of a white token on 
a board is the value of its location, 
but the value of a red token is the 
opposite of a white one, so it is a 
negative number. So all finite 
decimals, both positive and negative, 
can be represented.



When we compare the capacity of Napier’s original abacus with a decimal 
board of the same size, we see that a decimal board has a bigger range and 
also allows us to represent more numbers and in more ways. 

For example, compare two 8 by 8 boards:

Both have 1 in their lowest right hand corners.

The range of numbers N represented by a single location:
Napier’s abacus 1 ≤ N ≤ 16,384
Decimal board  -10,000,000 ≤  N ≤ 10,000,000

The variety of representations:
Napier’s abacus base 2, for all numbers up to 32,767
Decimal board base 10, for all numbers up to 99,999,999

 base 2, for numbers up to 255
base 5, for numbers up to 390,624
base 20, for numbers up to 3,199,999 





Six rules of moving tokens are sufficient to transform any 
configuration on a board to any other configuration representing 
the same number:



Two rules 
corresponding 
to the 
arithmetic 
equality -1+1=0

Two rules 
corresponding 
to the 
arithmetic 
equality 1 + 1 = 2

Two rules 
corresponding
to the 
arithmetic
equality 1 + 4 = 5



Applications of decimal boards

There is a consensus that knowing arithmetic is important for all students, and 
that it is a prerequisite for learning other mathematics.  
But what it means to “know arithmetic” is far from being clear. 
There are strong disagreements about the role of computational skills, the 
knowledge of algebraic properties of operations, the knowledge of specific 
facts, skills in applying mathematics, and the ability to solve difficult problems.

But it is well known that a person’s ability to do mental arithmetic, without any 
external devices to store numbers, is very limited. 
This is not a practical problem today, because even simple calculators provide 
more computing power than is needed in most situations.  
But calculators don't solve the problem of teaching arithmetic.  
They are “black boxes” that provide answers but hide the steps that lead to 
solutions.

So there is a need for low-tech computational devices that allow young 
students to perform fairly complex computations and that make visible how 
each action that a student performs influences the result.



In schools today the need for a low-tech device is met by paper-and- 
pencil computation, and the techniques that students learn are mostly 
the “standard” arithmetic algorithms that were used by accountants for 
several hundred years. 
 
Readily available teaching aids such as base-10 blocks, unifix cubes, and 
Cuisinaire rods do not provide additional computing power;  they only 
give a physical representation of mental arithmetic operations.
 
The arithmetic taught today still follows the pattern that was designed 
when the goal was to train human computers to perform arithmetical 
operations without any errors, quickly, and automatically.  
And the sequence of learning arithmetic operations was determined by 
which new skill required the use of skills that were previously learned.  
The same pattern is seen in modern classrooms.



Children start with rote counting; then they learn addition and 
subtraction by counting up and counting down. 

They learn how to write and read numbers, and they memorize 
addition and subtraction facts.  
And they practice written addition and subtraction.  

They start learning multiplication as repeated addition; 
they memorize multiplication facts, and then they learn a paper and 
pencil method. 
“Long division”, which involves all previous skills, comes last.  

This covers the arithmetic of whole numbers, which partially overlaps 
with three other topics: common fractions, decimal fractions, and 
negative numbers.



This way of teaching arithmetic has some drawbacks.

 The skills of written computation (especially multiplication and 
      division)  have minimal practical use. 
      When we asked undergraduate majors in computer science how often
      they used written division outside school and college classrooms,
      more than half answered “never”.  So a considerable amount of
      classroom time is spent on practicing useless skills.
 
 By learning skills sequentially, a student who doesn’t master one skill,
      never masters the remaining ones.  It also leads to endless repetition. 
      One teacher said, “Before I start fractions, I always review
      multiplication facts. But when students don’t know their addition
      facts, I just give them calculators.”

 Written algorithms are rigid. It is not easy to erase part of one’s work
      and do it differently.  This gives the wrong impression that there is
      one right way to do a computation, and makes experimentation
      difficult.



Use of a decimal board as a platform for teaching arithmetic

Disclaimer: 

We don’t say that written computations should not be taught, or that memorizing 
multiplication facts is not needed.
 
We think that written computation should be taught as one of the possible 
methods. 
And most college students whom we asked thought that memorizing 
multiplication facts is an important part of learning arithmetic.

But we think that written computation should not be a platform for teaching 
arithmetic.



When one uses a decimal board:

1. The topics of whole numbers, decimals, and negative numbers can be 
taught at the same time, because any algorithm that is implemented on 
this board can be applied simultaneously to all these numbers.
 

2. Operations can be taught in any order.  For example, neither 
multiplication nor subtraction is a prerequisite for division. This is the case 
because the rules for moving tokens on a board do not depend on what 
operation is being implemented.

3. Skills in mental computation, together with the automatic recall of 
“arithmetic facts”, facilitate, and significantly speed up, the use of a decimal 
board, but they are not a prerequisite for learning any algorithm.

4. Computation is flexible; retracting a step and doing something different 
is easy on a board, and this encourages experimentation.

5. Experimenting is safe, because changing one’s method of regrouping, as 
long as it is consistent with the six basic rules of moving tokens, never 
creates an error.



Thus the decimal board seems to be a better platform for teaching 
arithmetic than the platform of written computation, which is used 
currently.



How to multiply 107 * 43





Final Remarks

Today many topics in the history of mathematics are undergoing revision.  
In addition to having better access to historical sources, we have changed 
our view about the nature of mathematics during the last one and a half 
centuries.
 
 The creation of new domains of mathematics has made obsolete the old 
classification schema that divides mathematical topics into arithmetic, 
algebra, geometry, and calculus.
 
 When Napier’s location numbers were viewed as a (rather clumsy) attempt 
to use binary notation, they did not garner much attention.
 
 But if (as we think) they were an attempt to create a universal computing 
device, governed by a small set of simple rules, location numbers were an 
unprecedented idea that changed all data processing 300 years later.



Neither the set of rules that Napier presented, nor the rules for a decimal 
counting board that we have shown above, are universal. 

But because they are sufficient to cover most of the computation methods 
that are taught in elementary and middle schools, they may become a 
good platform for teaching arithmetic.
  
Our experiments with using decimal boards in mathematics courses for 
teachers are very encouraging.



If you would like more details:

baggett@nmsu.edu
andrzej.ehrenfeucht@cs.colorado.edu

Thank you!
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