New problems in stringology

AXA Workshop: Advanced Algorithms on Strings
Istituto Veneto di Scienze, Lettere ed Arti
Venice
June 22, 2016

Andrzej Ehrenfeucht University of Colorado, Boulder andrzej@cs.colorado.edu

Motto: Nihil novi sub sole

I'll talk about two methods that were discussed in the nineteen sixties and seventies but were abandoned as unfeasible:

sorting "unordered" sets, and finding "interesting words" in an arbitrary text.

Sorting

Let S be a set and f(x, y) be a real valued anti-symmetric function on S, f(x, y) = -f(y, x).

Finding a permutation $P = (p_1, ... p_n)$ of S which maximizes the sum $v(P) = \sum \{f(p_i, p_j): i < j\}$, is a nasty optimization problem, so replace it by an n-person game.

Game

Define the value of $P = (p_1, ..., p_n)$ for a player p_i as $v(p_i) = .5*\sum\{f(p_i, p_j): i \neq j\}$, so $v(P) = \sum v(p_i)$.

A player p_i can move to another position in the permutation only when the move increases the value $v(p_i)$. The game ends when no player can move.

Define the minimal target value for a player, $t(p_i) = .5max(\sum\{f(p_i, x): x \neq p_i\}, \sum\{f(x, p_i): x \neq p_i\})$

A permutation P is weakly sorted when, for every p_i , $v(p_i) \ge t(p_i)$.

Theorem 1 (very easy)

There exist weakly sorted permutations that can be reached by the *basic strategy* of each player.

Theorem 2 (easy)

If the values of f are *integers*, and max |f| = m, and the game is played by the *basic strategy*, then the time complexity of playing the game is $O(n^3m)$.

An application

Since anti-symmetric functions are closed under addition, therefore many attributes, f_1 , f_2 , ..., f_k , on S can be weakly sorted together using $f(x, y) = \sum \{f_i(x, y): i = 1, ..., k\}$.

And this fact allows us to create a binary tree of attributes, where the attributes in one node are "positively correlated", and the "correlations" between attributes in different nodes are mostly negative.

Generic example

Let $P = (P_1, P_2, P_3, P_4, P_5)$ be weakly sorted. So $v(P) \ge \sum \{t(x), x \text{ in } S\}$. But some of the values $v(P_1)$, ..., $v(P_5)$ can be negative (for example, $v(P_3)$ and $v(P_5)$ are negative).

In such case we partition the set of attributes into $\{f_1, f_2, f_4\}$ and $\{f_3, f_5\}$, and create two new weakly sorted permutations, $Q_1 = (P_1', P_2', P_4')$ and $Q_2 = (P_3', P_5')$.

Problems

Interesting words

We look at occurrences of words and scattered-words in a text written in alphabet A.

An example

20811833759097083566970527729472032 a text in $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

20<u>811833759</u>09708356697052<u>7729472</u>032 occurrences of *words* 811833759 and 7729472

208<u>11</u>8<u>33</u>75<u>9</u>09708356697052<u>772</u>94<u>72</u>032 occurrences of *scattered words* 11-33--9 and 772--72

These occurrences of scattered words are occurrences of previous words restricted to letters from subsets {1, 3, 9} and {7, 2} of alphabet A.

Remark

It is important that occurrences of scattered words are *only* those substrings of a text which are obtained by restricting occurrences of segments to all letters from a subset of an alphabet.

Notation: #w is the number of occurrences of a word or a scattered word in a text.

Definition 1

A word w is *complete* if and only if for every extension u of w, #u < .5#w. (Meaning: w is not mainly "part of" any bigger word; it stands for itself.)

Definition 2

A proper scattered sub-word v of a word w is an identifier of w if and only if v occurs in w only once and w > .5v.

(Meaning: most occurrences of v are parts of w.)

Definition 3

A word w is *interesting* in a text T if and only if w is *complete* and contains at least one *identifier* v.

Theorem (easy)

The number of all occurrences of all words w that are complete in a text T of length n is bounded by $n*log_2(n)$.

Three "informal" properties of interesting words

- 1. There are few or no interesting words in texts that are created from individual letters by "random" processes.
- 2. Editing texts by the "copy and paste" method usually creates *interesting* words.
- 3. To edit out interesting words from a text seems to be very tedious.

Problems

Thank you