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Abstract 

Mathematical proofs use two-valued logic.  This means that in any mathematical 

structure, every syntactically correct sentence is either true or false.  The 

meaning of logical connectives (and, or, not, ...) is well defined and doesn't 

depend on the context in which a connective is used.  Students with different 

mathematical backgrounds were asked to evaluate mathematical sentences.  

Most students: 

1. also used other logical values (e. g. "neither true nor false") when given the 

opportunity; 

2.  assigned the values true and false differently than is done in mathematics; 

and 

3.  interpreted logical connectives differently depending on the context. 

It is possible that students' difficulty with proofs is due to the fact that they do not 

see some mathematical proofs as being valid reasoning.   The finding also calls 

into question NTCM’s (2000, p. 56) statement, "A mathematical proof is a 

formal way of expressing particular kinds of reasoning and justification." 

 

 
 

Introduction 

1. 

  The system of two-valued logic that is used in mathematics was fully 

described at the beginning of the 20th century. The first complete 

description was given by Bertrand Russell and Alfred North Whitehead in 

Principia Mathematica (1910). The system is rule-based, and is often called 

"formal". Within set theory one can prove that the system is complete 

(completeness theorem) in the sense that if a statement cannot be proven 

from the assumptions, then there exists a mathematical structure (a 

counter-example) in which the assumptions are true and the statement is 

false. 

  No one  claims that mathematicians use these rules when 

they reason about mathematics. We are rather sure that they don't. The 

only claim is that the system of rules of two-valued logic could have been, 

in principle, a tool for proving theorems. 

 This system was not universally accepted. The main challenge 

came from Brouwer, who designed another system called Intuitionism (see 

Heyting, 1934), and since then many other systems of multi-valued logic 

have been designed. 

 

2. 

 From the beginning it has been clear that the use of logical 

connectives in two-valued logic (especially "if ... then") is different than in 

everyday life. Also we know that its use outside mathematics is severely 

restricted, due to the fact that all conclusions derived from inconsistent 

premises are essentially unreliable, and that showing the consistency of 

premises is mostly impossible. 

  

3. 

   Students at all levels have difficulty with understanding and 

constructing proofs. Some generally accessible proofs, such as proofs of 

the Pythagorean theorem, are based on geometric constructions and are 

rather untypical. More typical proofs are simply sequences of statements 

written in mathematical jargon or as formulas, which are either quotes of 

axioms and already proven theorems or corollaries of statements that have 

already been proved.  Such "verbal" proofs are mostly accessible only to 

specialists. 

  

4.  

 We wanted to see if the difference between the use of logical 

operators such as "if .. then" or "for every" by students and in two-valued 

logic, which is consistent with their use in mathematical proofs, is really 

very large. 

 

Subjects  

We used four groups of subjects.  The numbers in each group are given. 

48 computer science majors (juniors) taking a course in the theory of 

algorithms. 

36 education undergraduates  and practicing teachers taking a low-level 

mathematics course. 

19 education undergraduates and graduates, and practicing teachers 

taking a science course.  

22 graduate students in computer science taking a course in the theory of 

computation 

 
Task 

 Subjects were given a questionnaire with the following instructions:  

 This is not a test in mathematics or logic. Answer the questions using your 

knowledge of math and your common sense.  The task is to judge the validity of the 

sentences presented below.  Circle just one answer in each row. 

 The subjects were asked to choose one of five answers: true, false, both true and 

false, neither true nor false, I don't know. 

 There were eight questions. Each question had the form "If ... then ...", where both 

parts could be easily evaluated as true or false. The questions were: 

(1) If 1 = 2 then 2 = 3. 

(2) If 1 = 2 then 2 = 5. 

(3) If 1 = 3 then 5 = 5. 

(4) If 5 = 5 then 1 = 5. 

(5) If 4 = 4 then 1 = 1. 

(6) If every odd number is prime, then there is an even prime number. 

(7) If every odd number is prime, then there is an odd prime number. 

(8) If every even number is prime, then one is a prime number. 

In two-valued logic all sentences except (4) are true. The patterns are: 

 

 

 

 

 

(1) If 1 = 2 then 2 = 3. 

(2) If 1 = 2 then 2 = 5. 

(3) If 1 = 3 then 5 = 5. 

(4) If 5 = 5 then 1 = 5. 

(5) If 4 = 4 then 1 = 1. 

(6) If every odd number 

  is prime, then there is an  

  even prime number. 

(7) If every odd number 

 is prime, then there is an  

  odd prime number. 

(8) If every even number 

  is prime, then one is a  

  prime number. 
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Only one of the sentences is a logical tautology that doesn’t depend on any 

knowledge of arithmetic.  Sentence 7, “If every odd number is prime, then 

there is an odd prime number,” follows the pattern:  If for every x, P(x), then 

there is an x such that P(x).  And this is valid for any property P. 

 

Results 

The 125 subjects gave these answers: 

 sentence: true: false: both: neither: I don’t know: 

(1) If 1=2 then 2=3.   36* 39 15 22 13 

(2) If 1=2 then 2=5.   21* 59   7 13 15 

(8) If every even number 

is prime, then one 

is a prime number. 

  30* 50   8 19 18 

(3) If 1=3 then 5=5.   26* 50  17 19 13 

(6) If every odd number 

is prime, then there is  

an even prime number. 

  30* 50   6 22 17 

(7) If every odd number 

is prime, then there is 

an odd prime number. 

  96* 13   6   2   8 

(5) If 4=4 then 1=1. 100*   4   5 10   6 

(4) If 5=5 then 1=5.     4  72* 14 17 18 

(Answers based on two-valued logic are marked with an asterisk.) 

Conclusions 

  Subjects do not consider implications with false predecessors as being true 

(sentences 1, 2, 8, 3, and 6). Either they judge them as false, or they cannot assign a 

value of true or false to them. (For example, they may consider them meaningless. 

Some subjects actually said this after the quiz.) 

 Sentence (7) is an interesting exception.  It is considered true by most subjects 

(77%). It is possible that the reason for this is that it is a logical tautology, but we 

would need more data to reach such a conclusion. 

 Most subjects concluded that (5) was true, as we expected. 

 It was rather surprising that only 72 subjects (58%) judged (4) as false. But this 

finding is in agreement with a finding of  Selden & Selden (2003) that students have 

difficulty  finding errors in incorrect reasoning. 

 More results 

  Only 8 subjects (6%) judged all sentences according to two-valued logic. Five 

of these were graduate students in computer science who were quite familiar with 

Boolean algebra. 

 Overall we did not see any consistency or patterns in subjects' answers. For 

example, if we compare the values assigned to the two first questions, (1) If 1 = 2 

then 2 = 3; and  (2) If 1 = 2 then 2 = 5, we have (T = true, F = false, O = other): 

 
Answers given to questions 

1 (If 1=2, then 2=3) and 

2 (If 1=2, then 2=5) 
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Number of subjects  20  15    0  37    1    1     2    7  42 

Among all 125 subjects’ answers, 83 (66%) were unique.  Among the others, no 

pattern of answers, except the 8 answers in agreement with two-valued logic, was 

chosen by more than 4 subjects. 

 This lack of pattern strongly indicates that if we would ask subjects the same 

questions again, their answers would be not consistent with their previous answers. 

 Overall conclusion 

  It is well known that common concepts such as work or energy have 

specialized meanings in physics that are different from their common usage.  

Similarly the concepts of function or group have a technical meaning in 

mathematics.  It seems that the same is true about logical connectives that are 

used in everyday situations and in mathematical proofs.  
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