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1. The need for a revision of the prehistory of arithmetic 

The picture of arithmetic in preliterate societies drawn in the 19th and 20th 
centuries was based on comparative linguistics, ethnography, and very limited 
archaeological evidence. 
  

The evolutionary view of “progress” viewed early humans as savage brutes 
who used clubs and spoke in monosyllables.   
 
So it was assumed that arithmetic could not have been abstract, and that it 
was limited to making tallies, counting, and not much else. 
 
At present it is assumed that at least since the time of Cro-Magnons (~40,000 
years ago), early humans were intellectually equal to modern humans. 
 

So the question is not whether they could have developed an abstract 
arithmetic, but whether they did; and how it  could have been done. 
 
 



2. John Leslie’s hypothesis 
 

In his book Philosophy of Arithmetic, published in 1815, John Leslie proposed 
the hypothesis that the invention of arithmetic was not motivated by the need 
for counting, but by the need for sharing.  
 

The simplest fair sharing procedure is “one for me and one for you”.   
It doesn’t require that participants know how to count, or that they have 
number words for more than 3. 
 
Then Leslie says that the beginning of arithmetic stemmed from observing that 
any collection of objects is either “even”, i.e., it can be split equally, or “odd”, it 
can be partitioned into two equal parts with a remainder of one. 
 
 
 



The key discovery was that, when one repeats taking halves of a 
collection of objects, creating halves, halves of halves, and so on, and 
one records whether the amount is “even” or “odd” each time, the 
resulting “even-odd” record uniquely describes the original amount. 
 

The construction of even-odd records can be viewed as the beginning 
of arithmetic, because it allows one to simulate processes on physical 
quantities by processing records representing those quantities.  



 
So, for example, suppose we   
have this collection of stones: 
 
 
 
 
 
 
 
 
 

It can be represented by 
this record: 

 
 
It can be represented 
by this tally: 



On the previous slide you saw 23 stones, a tally 
of 23 marks, and a record of the result of 
repeated halving: 23 odd, 11 odd, 5 odd, 2 
even, 1 odd.  
 
Odd results are represented by blue tokens 
listed from bottom to top. Empty squares 
represent even results. The top token indicates 
the end of a record. 
  
The record can be read top down as 1 0 1 1 1, 
where “odd’ is 1, and “even” is 0. 
This is 23 written in base two.  



10111 
oeooo 



Thus, from the very beginning, arithmetic operations could have been operations 
on records, and not on quantities represented by records. 
  
When we start with “halving” (with remainder) as a basic arithmetic operation, we 
have two inverse operations to construct bigger numbers, “doubling” and “adding 
one”. 
For example, a record:            Its double:  And one more:  



In modern jargon we can say that Leslie assumed that the first arithmetic 
structure was not the number line, as most other authors have assumed, but a 
binary heap, which, when read horizontally, gives a number line; but it also has a 
vertical structure of a “binary tree”. 
 
One way to draw a binary heap of the first 31 positive integers:  

  1 
  2                                                         3 
  4                           5                            6                            7 
  8             9          10           11          12           13          14           15 
16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31 



The same heap as a tree, showing double and double plus one 



Remark 
 
Even-odd notation is equivalent to modern base 2 notation.  
 
But base 2 is defined in terms of three binary operations, addition, 
multiplication, and exponentiation,  
whereas even-odd notation and its corresponding binary heap require 
only two unary operations, double and add-one.  
 



Leslie’s hypothesis has another equally important aspect.   
 
There is no reason to assume that sharing was restricted to discrete 
collections of objects.  
  
Sharing other quantities could have been even more important.  
 
 And this suggests that the development of the concept of a fraction as one of 
the equal parts of a whole (an aliquot part) could have been part of 
arithmetic from the beginning, rather than being introduced later and defined 
in terms of whole numbers. 



Leslie’s hypothesis has another equally important aspect.   
 
There is no reason to assume that sharing was restricted to discrete 
collections of objects. Sharing other quantities could have been even more 
important.  
 
And this suggests that the development of the concept of a fraction as one of 
the equal parts of a whole (an aliquot part) could have been part of 
arithmetic from its beginning, instead of being introduced later and defined in 
terms of whole numbers.  

But in order to make Leslie’s hypothesis believable, we need to show that 
preliterate groups of people could have developed tools for doing arithmetic 
that were powerful and flexible enough to compete against written methods 
developed later by literate societies. 



3. John Napier’s contribution 
 
In the last chapter of Rabdology (1617) John Napier described a very 
flexible and ingenious way of representing numbers on a 
“chessboard” which allows one to carry out the four basic arithmetic 
operations (and much more) at least as efficiently as with paper and 
pencil.  



A basic unit is a “rod”, which is a finite sequence of locations labeled by a 
geometric progression of numbers. The quotient of the progression is 
two, on all rods.  A board is a set of rods arranged in a pattern convenient 
for a user. 



A basic unit is a “rod”, which is a finite sequence of locations labeled by a 
geometric progression of numbers. The quotient of the progression is 
two, on all rods.  A board is a set of rods arranged in a pattern convenient 
for a user.   

A token put on a board acquires 
 the value of its location.  



Examples of some small boards 
(In these examples rods are shown as columns of numbers.) 
  
 



Examples of some small boards 
(In these examples rods are shown as columns of numbers.) 
  
 

Notice that the columns in a 
binary heap of numbers (shown 
before) are also rods, so a 
binary heap of numbers is also 
an example of a Napier’s board.  
 



Important properties of Napier’s invention 
 
(1) A number on each rod is represented, not by the number of tokens, but by a 
 pattern of tokens, which is very efficient. 

 
(2) The use of geometric progressions allows one to carry out multiplication by 
shifting the existing patterns and adding the shifted values.  The design of the 
slide rule was also based on the same concept of shifting a pattern of numbers. 
So there is a clear connection between Napier’s interest in counting boards and 
his work on logarithms.  
 
(3) The rules for regrouping tokens are very simple, and a user does not need to 
memorize arithmetic “facts” in order to carry out arithmetic calculations. 
Also the rules for regrouping patterns of tokens do not use numbers assigned to 
locations, so number words are optional.  
 
(4) Using different sets of rods for different calculations provides flexibility.  



Computing with fractions 
 
In the last chapter of Rabdology Napier doesn’t talk about computing with 
fractions. But here is description of how it can be done. 
  
Decimal fractions and fractions in  
other bases 
  
It only requires an extension of  
the rods “downward”, so they  
include negative powers of two: 

On this board one can carry out  
computation with decimals  
ranging from .01 to at least 2000 
.  



Common fractions (rational numbers between 0 and 1) require a different 
construction based on the reciprocals of numbers that are used to form a binary 
heap.  
  
An example of 5 rods that can be used to handle fractions with denominators 
smaller than or equal to 10: 
 



An important theorem, which allows efficient  
computation of sums and differences of fractions,  
states that  
 
the unit fraction  
 1/lcm(n, m)  
can be represented on rods containing 1/n and 1/m. 
 
For example, 1/35 can be represented on two rods, 
one containing 1/5 and the other 1/7.   
 
                   1/35 = 1/56  + 1/160 + 1/224 
  
This is so, because   
   1/35 = 1/(7*8) + 1/(5*32) + 1/(7*32) 
      
                           1/35 = 32/1120 = (20 + 7 + 5)/1120 



Negative numbers 
  
John Napier doesn’t mention negative 
numbers in Rabdology, but they can be 
represented by tokens with a value of -1.  
 
Working with two kinds of tokens (with values 
1 and -1) allows us to represent two numbers 
on the same board, instead of using a 
different board for each number.   
 
So a negative number can be treated as “a 
number to be subtracted”. 
 
The conceptual difference between positive 
and negative numbers appears only during 
multiplication, because the product of two 
negative numbers is still positive.  

-23 is represented above. 



Irrational numbers 
 
During computation we mostly 
represent irrational numbers by their 
approximations.  But there is no 
established method to indicate during 
written computation whether a 
number shown is exact or rounded. 
But putting a token on a line 
separating two locations having values 
v and v/2 on one rod can always mean 
that its value, x, is somewhere in 
between; namely, v/2 < x < v.  So even 
when a token’s value is not defined, 
knowing its possible range is sufficient 
for using it in most computations. 
 

Above, a number between 1/6 and 1/3 is on 
the left, and a number between -1/12 and -1/6 
is on the right. 



Conclusion 
 
The hypothesis that the beginning of arithmetic started with partitioning 
a discrete or a continuous quantity into two “equal” parts, and this led 
to the development of advanced stages of arithmetic in a preliterate 
society, is theoretically possible.  
 
Counting boards that are designed according to the principle introduced 
by John Napier provide a tool for the development of arithmetic that has 
the same power as written computations.  
 
It requires only the technology that was available long before the 
invention of writing, and it doesn’t depend on the existence of a 
sequence of number words. 



4.  Arithmetic taught in schools  

At present in the United States and other industrial countries, skills in 
written arithmetic have very little practical value. 
  
But they still form the core of the arithmetic that is taught in schools, 
even if the goal of teaching arithmetic has changed from developing skills 
of written computations to understanding the principles of mathematics 
and its use in everyday life. 
  
And the techniques of written computation and the pedagogy developed 
to teach them, seem to be very poorly suited to the new goals. 
   
So we think that we should look for a different approach to teaching 
elementary arithmetic in grades K to 8. 
 
 And we think that replacing written arithmetic by arithmetic on counting 
boards could be the right option. 



Using counting boards in classrooms 

We have experimented with three kinds of boards: 
 
* Decimal boards of different sizes and shapes where rods are arranged into 
an array in which each row forms a geometric progression with quotient 5.   
 
The largest boards  
were 6 by 6, and some 
of them included 
decimal fractions. 



 
* Other small boards with different arrangements of rods: 

* And “heap boards”, which we won’t discuss here. 



Regrouping 

Each board provides a relationship between operations on numbers and 
moves one can make. 
For example, on the decimal board above a student may regroup tokens 
as follows, 

because he/she knows 
that 4 + 1 = 5. 



But the student can  
“discover” that  
.16 + .04 = .2,  
because it is obtained 
by the same “move”  
on the board: 

On a fractional part of  a 
decimal board the move 
looks like this: 



Using boards with college students, teachers, and middle 
school students 

We have already tested some ways of teaching arithmetic using counting 
boards in several college math courses attended by preservice elementary 
and middle school teachers and by students interested in teaching 
mathematics on the secondary or college level.  
 
Some materials have been used by teachers in their own classrooms, and 
during “enrichment” activities at the university for middle school students 
from local schools. 
  
The results are encouraging. Most participants find activities with the 
boards easy to learn, but interesting and challenging.  
 



The tasks we used belonged to two categories.  
 
1.  Students were shown how to carry out algorithms for addition, 
subtraction, multiplication and division for positive and negative decimals, 
as an alternative to computation with paper and pencil. 

 
These activities were interesting only to some students; a typical comment: 
“I already know one way of doing it, and I am not interested in learning 
another way.” 
  
2.  Students were given problems dealing with representing numbers on a 
board, and they had to figure out their own ways to solve them.   
 
These problems were interesting and challenging to the large majority of 
students, and we got very positive feedback about the tasks. 



Example 1 

You may use both white (positive) and red (negative) tokens. But 
you may put at most one token on each square. What numbers 
can you put on on this board?  Can you put -7? 



One way to put -7 on the board: 

Can you put 13 on the board? 
 
Not if you are limited to at most one token per square.  



In how many ways 
can you make zero 
on the 2 by 2  
board? 



In how many ways 
can you make zero 
on the 2 by 2  
board? 

There are 5 ways: 



Example 2 

With at most one token per square, what is the biggest number you 
can put on this board?  



Example 2 

With at most one token per square, what is the biggest number you 
can put on this board?  

Answer: 360 



Example 3 (a class project) 

How to put the numbers 1 through 61 on the counting board with 
exactly two tokens? You may include more than one solution. 
 



Disclaimer 

There are many possible reasons to teach arithmetic. For example, 
 -practical reasons 
 -social reasons 
 -cultural reasons 
 -intellectual reasons 
 
 -teach arithmetic for skills, for understanding, … 
 
We are not getting involved in this discussion.  
But we think that using counting boards can be a good teaching tool. 
 



5. Interesting mathematical problems 

Many problems concerning properties of counting boards are difficult 
and challenging. 
 
Two examples 

1. Consider boards of any size containing only unit fractions, 
 

 1 1/3     1/5        1/7       … 
 ½ 1/6     1/10      1/14      … 
 ¼ 1/12     1/20  1/28      … 
 …   …       …    …        … 
 
You may use only tokens with value 1 (no negative numbers!).  And you 
may put only one token at any location. 

Question 
Can any proper fraction with numerator 4 be represented by three or fewer 
tokens? 
(A positive answer to this question is the Erdös-Straus Conjecture which was 
formulated in 1948 and is still unproven.) 



2.  Consider decimal boards of any size. You may use negative numbers, using 
tokens with values 1 and -1.  
 … …  …  …  … 
 … 10  2  .4  … 
 … 5  1  .2  … 
 … 2.5 .5  .1   … 
 … … …  …  … 
 
In how many different ways can you represent the number 3 with two tokens?  

This is a nice problem for middle school students, and the eight answers are 
 
 2 + 1    4 + -1   5 + -2  8 + -5  
         128 + -125   2.5 + .5           3.2 + -.2           3.125 + -.125 
   
But are these the only answers?  We don’t know. 
(We only know that this problem is decidable.) 



2.  Consider decimal boards of any size. You may use negative numbers, using 
tokens with values 1 and -1.  
 … …  …  …  … 
 … 10  2  .4  … 
 … 5  1  .2  … 
 … 2.5 .5  .1   … 
 … … …  …  … 
 
In how many different ways can you represent the number 3 with two tokens?  

This is a nice problem for middle school students, and the eight answers are 
 
 2 + 1    4 + -1   5 + -2  8 + -5  
         128 + -125   2.5 + .5           3.2 + -.2           3.125 + -.125 
   
But are these the only answers?  We don’t know. 
(We only know that this problem is decidable.) 
If you can prove that there are only eight solutions, please let us know! 



Thank you! 
 
Comments? Questions? Suggestions? 
 
 
baggett@nmsu.edu 
andrzej.ehrenfeucht@cs.colorado.edu 


