Derivatives


 

Compute the finite differences of y = x3, for x = 1, 1.1, ..., 1.5, naming the first, second, and third differences dy, d2y, and d3y.

 

x

dx

y= x3

dy

d2y

d3y

 

 

 

 

 

 

1

 

1

 

 

 

 

0.1

 

0.331

 

 

1.1

 

1.331

 

0.066

 

 

0.1

 

0.397

 

0.006

1.2

 

1.728

 

0.072

 

 

0.1

 

0.469

 

0.006

1.3

 

2.197

 

0.078

 

 

0.1

 

0.547

 

0.006

1.4

 

2.744

 

0.084

 

 

0.1

 

0.631

 

 

1.5

 

3.375

 

 

 

 

Note: You can compute dy = 0.331 = 1.331-1, etc.

 

Remark.

You may also construct the table above sas follows using lists on the TI-83/84:

 

{1, 1.1, 1.2, 1.3, 1.4, 1.5}3→L1

ENTER

creates a list of y's;

ΔList(L1)→L1

ENTER

creates a list of dy's;

ΔList(L1)→L1

ENTER

creates a list of d2y's;

ΔList(L1)→L1

ENTER

creates a list of d3y's;

 

Create a table of the approximate values of derivatives dy/dx, d2y/(dx)2, and d3y/(dx)3, and also the exact values of derivatives y' = 3x2, y'' = 6x, and y''' = 6. Compare the results.

 

x

dy/dx

d2y/(dx)2

d3y/(dx)3

y'

y''

y'''

 

 

 

 

 

 

 

1.05

.331/.1= 3.31

 

 

3.3075a

 

 

1.1

 

.066/.01= 6.6

 

 

6.6b

 

1.15

397/.1= 3.97

 

6 =.006/.001

3.9675

 

6c

1.2

 

7.2

 

 

7.2

 

1.25

4.69

 

6

4.6875

 

6

1.3

 

7.8

 

 

7.8

 

1.35

5.47

 

6

5.4675

 

6

1.4

 

8.4

 

 

8.4

 

1.45

6.31

 

 

6.3075

 

 

 

 

Remark.

Compute y' in the same way that you computed y (use lists).

a To compute the y' column beginning 3.3075, 3{1.05,1.15, 1.25, 1.35, 1.45}2 L1

b To compute the y'' column beginning 6.6, 6{1.1, 1.2,1.3,1.4}→ L1

cTo compute the y''' beginning 6, 6{1, 1, 1} L1

 

This example shows why dy/dx, d2y/(dx)2, ..., provide an alternative notation for the derivatives y', y'' ..., of variable y relative to variable x.


Webpage Maintained by Owen Ramsey
Calculus Index